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The Guide – Computers and Intractability

“Despite that 23 years have passed
since its publication, I consider Garey
and Johnson the single most
important book on my o�ce
bookshelf. Every computer scientist
should have this book on their
shelves as well. NP-completeness is
the single most important concept to
come out of theoretical computer
science and no book covers it as well
as Garey and Johnson.”

Lance Fortnow, “Great Books: Computers
and Intractability: A Guide to the Theory of
NP-Completeness”



Ongoing Guide – Graph Restrictions and Their E↵ect



The updated NP-Completeness Column: An Ongoing Guide table 35 years later

GRAPH CLASS MEMBER INDSET CLIQUE CLIPAR CHRNUM CHRIND HAMCIR DOMSET MAXCUT STTREE GRAPHISO

TREES/FORESTS P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] P [GJ] P [T] P [GJ]
ALMOST TREES (k) P [OG] P [OG] P [T] P [105] P [5] P [17] P [5] P [5] P [20] P [76] P [17]
PARTIAL k-TREES P [OG] P [5] P [T] P [105] P [5] P [17] P [5] P [5] P [20] P [76] P [17]
BANDWIDTH-k P [OG] P [OG] P [T] P [105] P [5] P [17] P [5] P [5] P [OG] P [76] P [OG]
DEGREE-k P [T] N [GJ] P [T] N [29] N [GJ] N [OG] N [GJ] N [GJ] N [GJ] N [GJ] P [OG]

PLANAR P [GJ] N [GJ] P [T] N [78] N [GJ] O N [GJ] N [GJ] P [GJ] N [OG] P [GJ]
SERIES PARALLEL P [OG] P [OG] P [T] P [105] P [5] P [17] P [5] P [OG] P [GJ] P [OG] P [GJ]
OUTERPLANAR P [OG] P [OG] P [T] P [OG] P [OG] P [OG] P [T] P [OG] P [GJ] P [OG] P [GJ]
HALIN P [OG] P [OG] P [T] P [OG] P [5] P [17] P [T] P [OG] P [GJ] P [118] P [GJ]
k-OUTERPLANAR P [OG] P [OG] P [T] P [OG] P [5] P [17] P [OG] P [OG] P [GJ] P [76] P [GJ]
GRID P [OG] P [GJ] P [T] P [GJ] P [T] P [GJ] N [OG] N [32] P [T] N [OG] P [GJ]
K 3,3-FREE* P [OG] N [GJ] P [T] N [78] N [GJ] O? N [GJ] N [GJ] P [OG] N [GJ] P [40]
THICKNESS-k N [OG] N [GJ] P [T] N [78] N [GJ] N [OG] N [GJ] N [GJ] N [119] N [GJ] I [RJ]
GENUS-k P [OG] N [GJ] P [T] N [78] N [GJ] O? N [GJ] N [GJ] O? N [GJ] P [OG]

PERFECT P [34] P [OG] P [OG] P [OG] P [OG] N [28] N [OG] N [OG] N [20] N [GJ] I [84]
CHORDAL P [OG] P [OG] P [OG] P [OG] P [OG] O? N [93] N [OG] N [20] N [OG] I [84]
SPLIT P [OG] P [OG] P [OG] P [OG] P [OG] O? N [93] N [OG] N [20] N [OG] I [108]
STRONGLY CHORDAL P [OG] P [OG] P [OG] P [OG] P [OG] O? N [93] P [OG] N [109] P [OG] I [111]
COMPARABILITY P [OG] P [OG] P [OG] P [OG] P [OG] N [28] N [OG] N [94] N [102] N [GJ] I [22]
BIPARTITE P [T] P [GJ] P [T] P [GJ] P [T] P [GJ] N [OG] N [94] P [T] N [GJ] I [22]
PERMUTATION P [OG] P [OG] P [OG] P [OG] P [OG] O? P [44] P [OG] N [120] P [OG] P [OG]
COGRAPHS P [T] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] P [20] P [OG] P [OG]

UNDIRECTED Path P [OG] P [OG] P [OG] P [OG] P [OG] O? N [13] N [OG] N [20] N [RJ] I [22]
DIRECTED PATH P [OG] P [OG] P [OG] P [OG] P [OG] O? N [99] P [OG] N [1] P [OG] P [7]
INTERVAL P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] N [1] P [OG] P [OG]
CIRCULAR ARC P [OG] P [OG] P [OG] P [OG] N [OG] O? P [106] P [OG] N [1] P [11] P [80]
CIRCLE P [OG] P [GJ] P [OG] N [73] N [OG] O? N [39] N [71] N [26] P [OG] P [68]
PROPER CIRC. ARC P [OG] P [OG] P [OG] P [OG] P [OG] O? P [OG] P [OG] O? P [11] P [82]
EDGE (OR LINE) P [OG] P [GJ] P [T] N [95] N [OG] N [28] N [OG] N [GJ] P [59] N [19] I [OG]
CLAW-FREE P [T] P [OG] N [103] N [85] N [OG] N [28] N [OG] N [GJ] N [20] N [19] I [OG]

www.cos.ufrj.br/~celina/ftp/j/RJ-current.pdf

www.cos.ufrj.br/~celina/ftp/j/RJ-current.pdf
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Two long-standing problems in graph theory

Perfect graphs: Chvátal’s SKEW PARTITION is polynomial

Intersection graphs: Roberts–Spencer’s CLIQUE GRAPH is NP-complete

Both SKEW PARTITION and CLIQUE GRAPH proved to be in NP when their
classification into P or NP-complete was proposed

V. Chvátal – J. Combin. Theory Ser. B 1985

F. Roberts, J. Spencer – J. Combin. Theory Ser. B 1971



The three nonempty part problem

Full dichotomy for the RECOGNITION PROBLEM:
STABLE CUTSET, 3-COLORING are the only NP-complete

T. Feder, P. Hell, S. Klein, R. Motwani – SIAM J. Discrete Math. 2003

Full dichotomy for the SANDWICH PROBLEM:
61 interesting problems: 19 NP-complete, 42 polynomial

HOMOGENEOUS SET SANDWICH PROBLEM is polynomial
CLIQUE CUTSET SANDWICH PROBLEM is NP-complete
Full dichotomy for the GENERALIZED SPLIT GRAPH SANDWICH PROBLEM:

(2,1)-GRAPH SANDWICH PROBLEM is NP-complete

“The polynomial dichotomy for three nonempty part sandwich problems”

Discrete Appl. Math. 2009 (with Rafael Teixeira, Simone Dantas)



Complexity-separating graph classes for

vertex, edge and total coloring

Celina de Figueiredo



Edge and total coloring complexity-separating classes

When restricted to {square,unichord}-free graphs,
edge coloring is NP-complete whereas total coloring is polynomial



Complexity restricted to unichord-free and special subclassesAlgorithmica (2017) 77:786–814 789

Table 1 Computational complexity of colouring problems restricted to unichord-free and special subclasses

Colouring problem \ class General Unichord-free {!, unichord}-free {!, unichord}-free

Vertex-col. NPC [14] P [26] P [26] P [26]

Edge-col. NPC [13] NPC [18] NPC [18] NPC [18]

Total-col. NPC [21] NPC [17] P [16,17] NPC [17]

Clique-col. Σ
p
2 C [20] P P P (κ = χ )

Biclique-col. Σ
p
2 C [10] P P P (κB= 2)

Star-col. Σ
p
2 C [10] P P P (κS= 2)

Bold values indicate results established in the paper

Fig. 3 Unichord-free graph
with an exponential number of
bicliques

wise we have a diamond). It is also known that the problem of 2-clique-colouring is
Σ

p
2 -complete for perfect graphs and it isNP-complete for {K4, diamond}-free perfect

graphs [4].
Regarding the biclique-colouring problem, we prove that the biclique-chromatic

number of a unichord-free graph is either equal to or one greater than the size of a largest
set of mutually true twin vertices. Moreover, we describe an O(n2m)-time algorithm
that returns an optimal biclique-colouring by returning an optimal biclique-colouring
of a unichord-free graph input. Notice that even highly restricted unichord-free graphs
have a number of bicliques exponential in the number of vertices, e.g. every graph
obtained by taking t ≥ 1 copies of the complete graph K3 with a vertex in common
has 2t + t bicliques (see Fig. 3).

Both clique-colouring and biclique-colouring algorithms developed in the present
work follow the same general strategy that is frequently used to obtain vertex-colouring
algorithms in classes defined by forbidden subgraphs: a specific structure F is chosen
in such a way that one of the following cases holds.

1. a graph in the class does not contain F and so belongs to a more restricted subclass
for which the solution is already known; or

2. a graph contains F and the presence of such structure entails a decomposition into
smaller subgraphs in the same class.

The chosen structure for the clique-colouring algorithm is the triangle. If there exists
a triangle in the unichord-free graph, we have a decomposition into two smaller graphs
with a single vertex in common [26]. Otherwise, the graph is triangle-free and clique-
colouring reduces to vertex-colouring. Based on an efficient algorithm for vertex-

123

Author's personal copy

[10] M. Groshaus, F. Soulignac, P. Terlisky – J. Graph Algorithms Appl. 2014

[20] D. Marx – Theoret. Comput. Sci. 2011

“Efficient algorithms for clique-colouring and biclique-colouring unichord-free graphs”

Algorithmica 2017 (with Hélio Macedo and Raphael Machado)
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Every graph is easy or hard:
dichotomy theorems for graph problems
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Sandwich problems for perfect graph classes

chordal

strongly
chordal

comparability

bipartite permutation

cographinterval

split

perfect

—— NP-complete —— polynomial - - - - - open



Is the not C-free easier than the C-free sandwich problem?

A trigraph (G1,G2) satisfies property ⇧ if
there is no sandwich graph G for (G1,G2) which does not satisfy ⇧

The recognition of Berge graphs is polynomial
but

the recognition of Berge trigraphs was previously open

The imperfect graph sandwich problem is polynomial

Equivalently, recognizing Berge trigraphs is polynomial



Detecting 3-path configurations

The world of hereditary graph classes 3

7.3: Propeller-free graphs

8: (3PC(�, ·), proper wheel)-free graphs

8.1: Cap-free graphs

8.2: Claw-free graphs

8.3: Bull-free graphs

9: Excluding some wheels and some 3-path-configurations

9.1: Even-hole-free graphs

9.2: Perfect graphs and odd-hole-free graphs

10: Combinatorial optimization with 1-joins and 2-joins

10.1: 1-Joins

10.2: 2-Joins

2 Truemper’s Theorem

Theorem 2.1 (Truemper [121]) Let � be a {0, 1} vector whose entries are in
one-to-one correspondence with the chordless cycles of a graph G. Then there exists
a subset F of the edge set of G such that |F � C| � �C (mod 2) for all chordless
cycles C of G, if and only if for every induced subgraph G� of G that is a Truemper
configuration or K4 (see Figure 1), there exists a subset F � of the edge set of G� such
that |F � � C| � �C (mod 2), for all chordless cycles C of G�.

3PC(·, ·) 3PC(�, ·) 3PC(�, �) wheel K4

Figure 1: Truemper configurations and K4

Truemper configurations are depicted in Figure 1, where a solid line denotes an
edge and a dashed line denotes a chordless path containing one or more edges. We
now define these configurations.

The first three configurations in Figure 1 are referred to as 3-path configu-
rations (3PC’s). They are structures induced by three paths P1, P2 and P3, in
such a way that the nodes of Pi � Pj , i �= j, induce a hole. More specifically,
a 3PC(x, y) is a structure induced by three paths that connect two nonadjacent
nodes x and y; a 3PC(x1x2x3, y), where x1x2x3 is a triangle, is a structure induced

theta and pyramid: polynomial prism and wheel: NP-complete

The not pyramid-free sandwich problem is polynomial
but

the complexity of the pyramid-free sandwich problem is open

“The world of hereditary graph classes viewed through Truemper configurations”
by K. Vušković, in Surveys in Combinatorics (2013)



Vertex-disjoint paths and connection problems

Connected
router

subgraph
fixed |R|

Min-sum
st-VDP

Connected
router

subgraph
Problem (I)

Constrained
terminal
partition
fixed r

Shortest
K-cyle fixed

|K|
Problem (II)

|R|  3

Constrained
router

topology
fixed r

Problem (II)
fixed |R|

Constrained
router

topology
r = 2

Constrained
router set
|R| = 2

Constrained
router set
fixed |R|

S-TCP r = 1

1 + d VDP Min-sum 1 + d
VDP

S-TCP r = 2 S-TCP fixed r

S-TCP fixed
r, |W | No
linker

restriction

S-TCP fixed
r, |W |

Min-sum VDP
fixed k

Vertex
disjoint paths

fixed k

“On undirected two-commodity integral flow, disjoint paths and strict terminal connection

problems”, Networks (2021) (with Alexsander Melo, Uéverton Souza)



A quantum walker spreads across a 2-tessellation cover

The chromatic upper bound: T(G) 6 min{� 0(G),�(K(G))}

“The graph tessellation cover number: Chromatic bounds, e�cient algorithms and hardness”

Theoretical Computer Science (2020) (with Alexandre Abreu, Luis Cunha, Luis Kowada,

Franklin Marquezino, Daniel Posner, Renato Portugal)
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